

Standby Power and Other Low Power Modes

Alan Meier August 2002

Plan

Background to "literature review"

A rapid overview of:

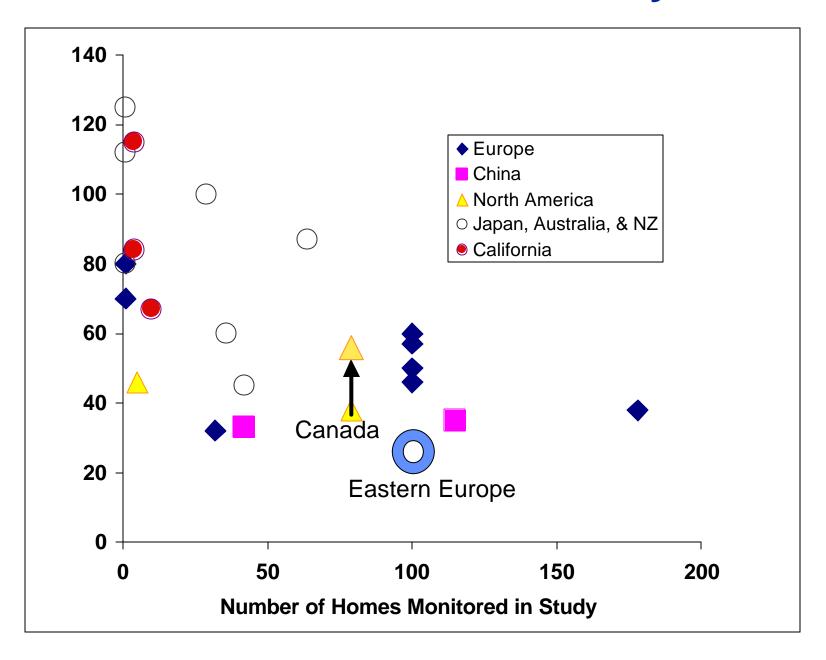
- 1. Measurements
- 2. Programs
- 3. Research
- 4. California summary
- Goal is to provide the group a sense of present situation and to prepare for efficient discussions

Measurements of Low Power Modes , _____

- Goal: Compile and review field measurements (with special emphasis on California)
- Measurement approaches:
 - —Whole-building
 - Problem: obtaining enough buildings to be representative
 - —"Bottom-up"
 - Existing products
 - New products
 - Problems: getting usage patterns and saturations of minor products

Field Measurements (2)

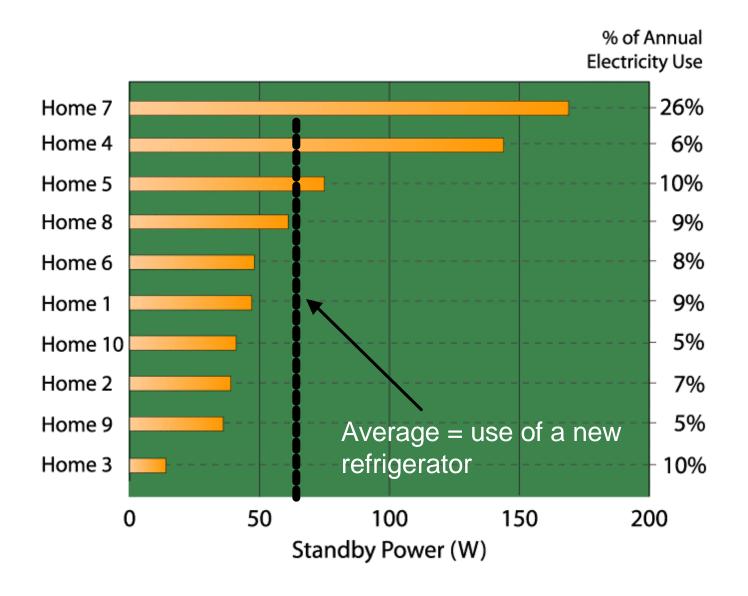
Sequence of presentation:


- 1. Residential
 - a. Whole building
 - b. Bottom-up
- 2. Commercial
 - a. Sleep/standby
 - b. Combined

Whole-House Measurements

- > 20 Studies identified
 - —Over one thousand homes in 17 countries
 - —Only one formal study in California/USA (10 homes)
 - Data collected informally on 13 other homes in USA
- Nobody explicitly measured sleep modes
 - —Measurements sometimes made in observed mode
 - Sometimes sleep mode is also lowest power mode
- Field measurements underestimate low-power mode energy use

Field Measurements of Standby



Observations

- Australia/NZ & Japan appear to have highest standby
- No sleep measurements
- No data on growth rates
- USA/California
 - —No significant standby measurements in
 - —Large variation among the few US measurements
 - —20 standby appliances per home
- Probable California situation:
 - ~10% of residential electricity use
 - —~70 Watts/home

California Standby Measurements (1)

Standby in One California House

Product	Model Year	Stand- By (Watts)	
ATT Broadband Cable Box	1998	34 W	
Sony 20Ó Color TV	1998	14 W	
Sony VCR	2000	13 W	
Garage Door Opener	1980	12 W	
Sony 27Ó Color TV	1993	11 W	
Bose Acoustic WaveÑCD	2000	6 W	
HP Desk Jet Printer	1995	5 W	
Hitachi Laptop PC AC Adapter	1998	4 W	
Panasonic Clock Radio	1995	3 W	
Indoor TV Antenna Amplifier	1998	3 W	
Outdoor Motion Detector	2000	3 W	
Intermatic Timer	1985	3 W	
2 nd Timer	1985	3 W	
Clock Radio	1980	2 W	
Motion Detector	2001	2 W	
Hamilton Beach Coffee Pot	2000	1 W	
Total		122 Watts	

Missing:

- Microwave
- Cordless phone
- •Chargeables

Still to come:

- •White goods
- •TV adapters
- Ceiling fans

Standby power use is increasingly common among white goods

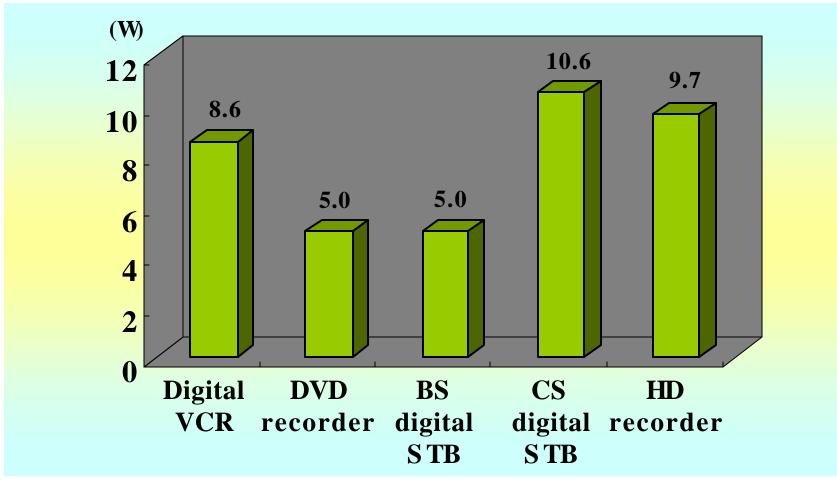
QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.


Bottom-Up Measurements

- Useful for
 - —Estimating regional energy use
 - —Exploring impacts of new products
 - —Time trends
- No information about
 - —Enabling rates for power management
 - —Unplugging rates and actual conditions
 - —Saturations of minor products
 - —Hard-wired standby

Standby Power (Watts) Minimum, Average and Maximum

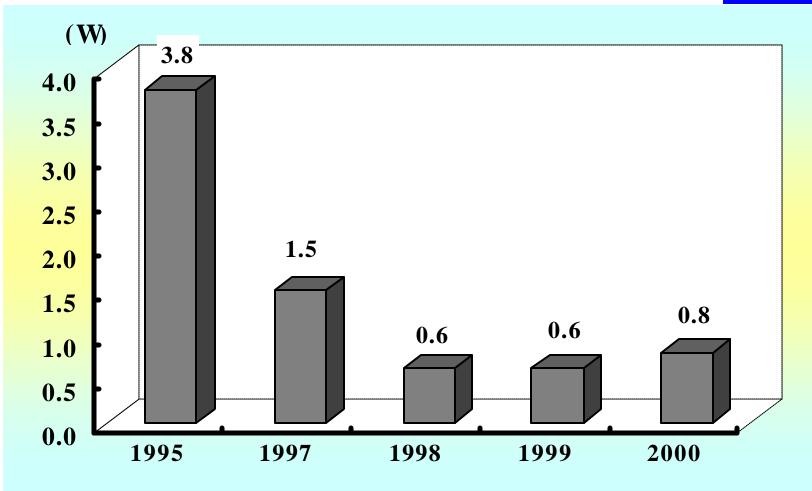
Summary of individual measurements



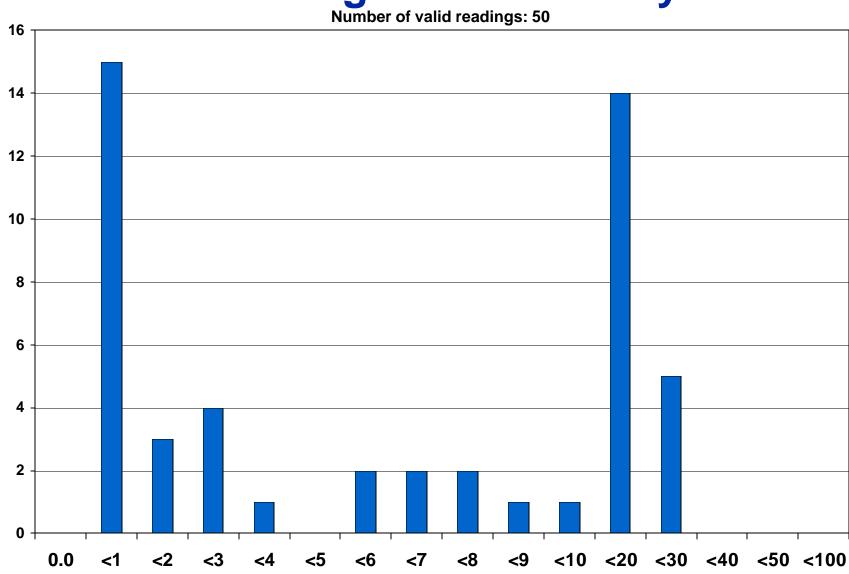
1 watt = 9 kWh/year

Source: http://standby.lbl.gov

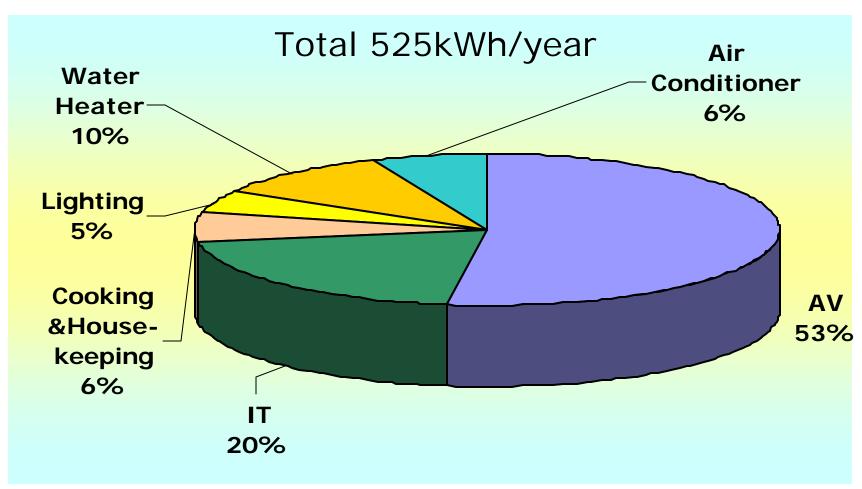
Stand-by Power of Digital AV appliances in Japan



Source: Jyukankyo Research Institute


Stand-by Power by Product Year for Japanese TV Sets

Source: Jyukankyo Research Institute


Australia - Integrated Stereo Systems

Power of Appliance in the specified mode - Watts

Source: Lloyd Harrington, Energy Efficient Strategies (Australia) 2002

Standby Bottom-Up Estimate - Japan

Measured standby (W) in 1999; number of appliances owned in 2001; schedules from 2001survey. Source: Jyukankyo Research Institute

Commercial Buildings

- No whole-building measurements of standby and low power
 - —Some measurements of "night time power use":
 - 0.17 W/ft² (deGroot Belgium)
 - 0.06 W/ft² (Meier office equipment standby only)
- Few bottom-up estimates of standby and low power for USA for office equipment
 - —Some surveys of modes in office equipment
- Definition problems: scope and mode

Measurement Gaps

- Low-power measurements in US homes
 - -Whole-house
 - —Individual products
 - —Times in different modes
- Special study areas
 - set-top and converter boxes
 - digital appliances
 - hardwired standby
- Commercial buildings all aspects
 - —Whole building
 - -Products
 - —Times in different modes

Programs Related to Low Power Modes

- Types of programs
 - —Test procedures
 - —Certification
 - —Labels
 - —Mandatory regulations
 - —Corporate goals

Please see documents for details

Example programs....

Programs...

	_	Covered		-	Active
Program/Activity	Region	Devices	-by	Mode	Power
Energy Star	US, Australia,	TVs, VCRs, set-	Yes	No	No
consumer electronics	Canada,	top boxes,			
Certification	Taiwan	audio, etc.			
Energy Star office	US, Europe,	Computers,	No	Yes	No
equipment	Japan,	monitors,			
Certification	Australia,	printers,			
	Taiwan,	copiers, fax			
	Canada				
European Code of	Europe	TVs, VCRs,	Yes	Yes	No
Conduct		IRDs, low V.			
Certification		power supplies			
Top Runner	Japan	Office	Yes	Yes	Yes
Mandatory		Equipment &			
		Electronics			
Appliance Standards	US	Major domestic	No*	No*	Yes
Program		appliances	Except Refrig.		
Mandatory			_		
Federal Energy	US	All plugged-in	Yes	No	No
Management		devices			
Program (FEMP)					
Purchasing spec.					
International	InternÕl	All plugged-in	Yes	No	No
Electrotechnical		devices			
Commission (IEC)					
Test procedure					

Comments on Programs

- No programs systematically address both standby and sleep
 - —Energy Star is largest program addressing sleep or standby
 - —Increasing balkanization in programs to address low power modes
 - —No common test procedures
- Most regulatory standards cover active but not standby/sleep
 - —Test procedures for white goods don't capture standby

Potential Programs

- Mandatory maximum levels for standby power use in certain products or components
- "Vampire" buy-down program
- Minimum efficiency standards for power supplies
- Limiting hard-wired standby power use in new homes
- Establish a common communications protocol for cable service providers

Reducing Energy Use of Low Power Modes: Research Directions

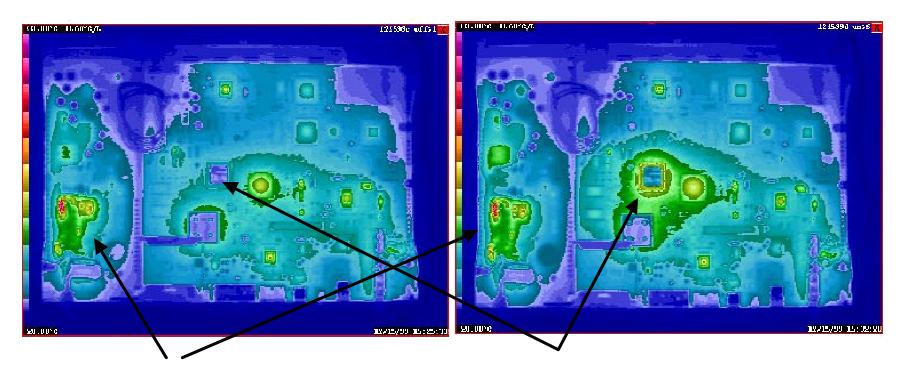
- Diverse products means diverse strategies
- Little research explicitly directed towards reducing low power modes
 - —Often addressing other problem or goal
 - —"borrowed technologies"
- Efficiency strategies:
 - —Improve efficiency of components
 - —Software improvements that permit equipment operation to better match functional needs
 - —External improvements

Hardware Improvements

- Increase efficiency of power supply
 - —No load
 - —Part load
 - —Move switch to high-voltage side
- Reduce power draw of circuitry
 - —De-energize components not needing use
 - —Design ultra-low power circuits
 - Design special sensor-circuits for very low power modes (to sense network, voice, face, motion, etc. signals)
- Reduce power of I/O components
 - —Displays are particularly important

Software Improvements

- Better match operational components with functional needs
 - —Active --> sleep
 - —Sleep ---> deeper sleep
 - —Sleep --> off
- May result in *increased* energy use in low power modes (but less active)
- Solutions will depend on device


Thermographs of

Satellite/Internet/DVR Box

"OFF" - 17 Watts

ON - 21 Watts

Power Supply

Microprocessor

Some components are energized even when signal is unavailable

External Changes

- Improved communications protocols to enable more (or deeper) sleep modes
 - —Cable TV & set-top boxes
 - —Networked homes & appliances
- A building-wide DC power network
- Improved user interfaces
 - —Encourages users to enable power management and exploit low-power modes

Research Topics

- Develop communications protocols for networks to accommodate the lowest possible power modes while not in active
- Improve power supply efficiency, especially at part loads
- Improve power management, possibly with more modes
- Develop dimmable displays linked to information from sensors
- Explore viability of DC networks for commercial and residential situations
- Investigate technologies to reduce standby in "hardwired" devices
- Standardize user interfaces to encourage greater reliance on low power modes
- Optimize battery charging circuitry
- Long-term: explore ultra low-power circuitry and ways to supply power to it

California

Residential standby

- -Recommended value: 70 W/home (~10%)
- ~900 MW 800 GWh/yr
- —No estimate on sleep mode
- Commercial buildings
 - —Low power in office equip only: 1100 GWh/yr

California Trends

- Residential growth likely
 - —Reductions in TVs, VCRs, audio
 - —Growth likely from set-tops/converters, digital appliances, home networks, white goods, hard-wired devices
- Commercial trends
 - **???**
- Overall, energy use of low power modes is likely to be growing faster than almost all other end uses

California Energy Analysis

- Obtain better estimates of actual energy use of low power modes in homes and commercial buildings
 - —Direct measurements
 - —Surveys of behavior
- Examine trends in new products
- Investigate energy savings potentials in key products
- Estimate statewide savings

End